
Forman Journal of Economic Studies 

Vol. 12, 2016 (January–December) pp. 57-73 

 

Detecting Mean-Variance Shifts in a Financial Time Series: 

A Firm Level Case Analysis of Karachi Stock Exchange 

Muhammad Ali Bhatti, Eatzaz Ahmad and Marium Iqbal
1
  

Abstract 

This study aims at detecting the number, locations and size of deterministic shifts 

in a financial time series, using Inclan and Tiao (1994)’s algorithm. The 

algorithm, developed to address the violation of the assumption of constant 

unconditional variance of GARCH model in order to reduce the persistence of 

volatility over time, uses the cumulative sums of squares of partitioned series, and 

is iteratively applied to detect both mean- and variance-changes in the series, 

hence named Iterated Cumulative Sums of Squares (ICSS) algorithm. A properly 

normalized version of the maximum of CSS-statistic asymptotically follows 

normal distribution, the quantiles of which are used in the algorithm. Firm-level 

data from Karachi Stock Exchange is used to demonstrate the application of the 

algorithm. An improved form of the algorithm, by Bos and Hoontrakul (2002), is 

also applied as a sensitivity check to evaluate and rectify the cases where ICSS 

algorithm might have detected a mean-shift in the series as a variance-shift. 

Key Words:  Stock Market Volatility, Change Point Detection, Inclan-Tiao 

Algorithm 
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1. Introduction 

 The auto-regressive conditional hetroskedasticity (ARCH) process, 

originally introduced by Engle, (1982) and extended by Bollerslev, (1986) as 

Generalized ARCH (GARCH) model, is a well-established and the most popular 

methodology for analyzing the time varying behavior of volatility, especially of 

high frequency financial time series data. The ARCH family of models assumes 

that conditional variance is a continuous function of the past changes to the 

variance process, while the unconditional variance is constant. However, Inclan 

and Tiao, (1994) point out that this assumption is not usually satisfied in case of 
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financial time series. By introducing the deterministic changes in the 

unconditional variance in the ARCH framework, both the deterministic and the 

stochastic structures can be accommodated in the variance process. Many studies 

find that the incorporation of the deterministic changes considerably reduces the 

persistence of variance over time, e.g., Lamoreux and Lastrapes, (1990b); 

Aggarwal et al., 1999;  Malik, (2003); Malik et al., 2005; Law, 2006; Lik et al, 

2005; Malik et al., 2005; Covarrubias et al., 2006; Hammoudeh and Li, 2008; and 

Wang and Moore, 2009. This study estimates the number, locations and the sizes 

of deterministic shifts in the mean and/or variance of the return series. The 

theoretical framework and methodology for the detection of number, locations 

and the sizes of deterministic shifts in the mean and/or variance of a financial time 

series is explained in Section 2, followed by the presentation of empirical results 

in Section 3. Conclusions and implications of the study are given in the last 

Section. 

2. Theoretical Framework and Methodology   

 Different approaches can be used to detect the change points in the mean 

and variance of stock returns. Following Brown, et al (1975),
2
 the concepts of 

cumulative sums and cumulative sums of squares for a series can be used in this 

regard. For example, exploiting the phenomenon that the average of daily stock 

returns are usually not significantly different from zero, the changes in mean can 

be detected by testing the significance of sequentially calculated mean returns. 

The sequential means are defined as 1
/

k

k tt
r r k

=
=∑  , where, k = 2, 

…….,T   and  t = 1,2,……..,T.  Let t′  be the point at which kr  becomes 

significantly different from zero first time. Thus, t' is considered as the first 

change point, i.e. CP1. The same procedure is applied on the remaining series 

starting from the observation t′+1 to detect any change point t'' > t', if it exists. 

This sequential process is repeated until there is no significant kr  in the remaining 

part of the series. 

 According to another simple procedure, the differences between the two 

means, i.e. kr  and 
t k

r −
, t  = 1,2,……,T and k  = 2,3,……, T , is tested, where 

1
/

k

k tt
r r k

=
=∑  and 

T

t=k+1T -k t= /(T - k)r r∑ . Starting from t = 2, let t′  be 
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the point at which the difference between the two means, i.e. 
k

r  and T kr −  

becomes significant first time, it is taken as a first change point i.e. CP1. This 

process is then applied on the remaining series starting from the observation ′t +1  

up to T. This process is repeated until there is no further significant difference. 

 The same approach can also be used to find the changes in variance. The 

ratio of two variances σ2
k and σ2

T-k can be tested, where
2 2

1
  ( ) /( 1)

k

k t kt
r r kσ

=
= − −∑ , and 2

1
( ) /( 1)

T

T t T kt k
r r T kκσ 2

− −= +
= − − −∑ . Let t′  be the 

point at which the ratio of the two variances, i.e., 2

kσ  and 2

T kσ −  becomes first time 

significantly different from 1. It is thus taken as the first change point i.e. CP1. 

The same process is then applied on the remaining series starting from t′+1 up to 

T. This algorithm is repeated until there is no further significant ratio of the two 

variances, i.e., 2

kσ  and 2

T kσ − .  

2.1. Iterated Cumulative Sum of Squares (ICSS) Algorithm  

 Inclan and Tiao, (1994) point out that any function of cumulative sums 

cannot correctly identify more than one change points at a time in most of the 

cases due to the masking effect.
3
 They introduce a more comprehensive procedure 

for the detection of change points. The procedure adopted by Inclan and Tiao is 

named as Iterated Cumulative Sum of Squares (ICSS) algorithm. By using the 

centered version of cumulative sum of squares, the ICSS algorithm detects the 

number, magnitude and time periods of two types of changes, i.e., increase and 

decrease in the variance systematically at different pieces of a series. The full 

detail of the algorithm is presented as follows. 

 Let rt, a series of stock returns expressed around its mean value, follow 

first order autoregressive stochastic process, i.e. 

1( ) ( )
t t t t t

r r r r eφ −− = − +   (1) 

where, 
t

r  is the mean of the entire series of rt and et  is a linearly independent and 

normally distributed error term with mean zero and variance σt
 2

. It is assumed 

that the variance of the series remains constant for some time. Then it suddenly 

changes due to the effect on the financial market of some national or international 

                                                 
3
 In case of more than one change points, the function of cumulative sum of squares is likely to 

determine the most significant ones only. For example, the cumulative sum of squares statistic 

may overlook a moderate-sized change point followed by a major change point.  
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news of political or economic nature. The changed variance again remains 

constant for some time at this new level until another change occurs due to some 

other event. Let us denote the points in time at which variance changes by mi, i 

=1, 2,…q, where q is the total number of change points. Further, denote the 

variance within each stationary phase by 2

miσ , where, i
  
= 0,1,2…q, that is: 

2

tσ    
= 2

0mσ   for 1 ≤ t < m1
  
 

2

tσ  = 2

1mσ  for m1 ≤ t < m2  

: 

2

tσ    = 
2

mq
σ   for m q  ≤ t ≤ T 

 where 2

0mσ   is the variance of the piece of series from the start to one 

observation preceding the first change point. Similarly, 2

1mσ  is the variance of the 

series starting from the first change point to one observation preceding the second 

change point and so on until 2

mq
σ  is the variance of the series starting from the last 

change point to the last observation of the entire series. To study the changes in 

the volatility over time, the squared values of et are used to measure volatility in 

the series under consideration. Being squared quantities, these values will be large 

in the periods of high volatility and comparatively small in the periods of relative 

tranquility. We want to test the null hypothesis 

H0:  
2 2 2

1 2 .....
m m mq

σ σ σ= = =  

versus the alternative hypothesis 

 H1: 
2 2

'mi miσ σ≠  for at least one pair 'i i≠ . 

Let CSSk, the cumulative sum of squares of et series, be defined as: 

2

1

k

k t

t

CSS e
=

=∑  (2) 

where, k = 1,2,…T  and t = 1,2,…T 

 Each observation of CSSk series is the cumulative sum of the squared et 

from the first observation to the k
th

 observation. Since the series of CSSk is a series 

of cumulative sum of squares, it is a non-decreasing function of k and remains 

non-negative for all data points. The graph of CSSk against k will roughly be a 
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straight line for a series with stationary variance. Any significant increase or 

decrease in the variance will drive the graph systematically above or below the 

straight line, respectively. Usually the magnitude of change in CSS will be 

relatively small as compared to the value of CSS itself, particularly when the 

value of k is large. Thus, a change in variance will bring very slight change in the 

slope of CSSk plot. This phenomenon makes it difficult to visually detect the 

change point from its plot. Inclan and Tiao (1994) center the CSSk so that its mean 

is zero. Let the centered version of cumulative sum of squares of et series, CCSSk, 

be defined as 

k
k

T

CSS k
CCSS

CSS T
= −   (3) 

where, k = 1,2…..T 

 In case of almost homogeneous variance, CSSk /CSSt and k/T ratios will be 

similar and the value of CCSSk will oscillate around zero. The plot of CCSSk 

against k oscillates around horizontal axis as compared to the plot of CSSk which 

oscillates around a positively sloped straight line with zero intercept. Therefore 

the plot of CCSSk is relatively easy to visualize and work with. In case of any 

increase (decrease) in variance, the value of CCSSk will drift up (down). The 

significant variance change point can be identified by exploiting the behavior of 

maximum CCSSk. Under the assumption that variance remains stationary 

throughout the series, the statistic CCSSk(T⁄2)
1/2

 follows a Brownian Bridge 

asymptotically (Inclan and Tiao, 1994). Therefore, for large T, one can use this 

asymptotic distribution to compute the critical values for given percentiles. 

Typically, the critical values for 95th and 99th percentiles are +1.358 and +1.628, 

respectively. These values can be used to determine the significance of a change 

point in a series.  

 Inclan  and Tiao (1994) present an iterative procedure based on systematic 

application of CCSSk function to lessen the problem of masking effect by looking 

for just one more change point at a time. This procedure is named as Iterative 

Cumulative Sums of Squares (ICSS) algorithm. 

 This algorithm first locates the change point in the extremes of the series 

and then moves towards the middle of the series. In the first step, this algorithm 

calculates CCSSk for the entire series. If max CCSSk(T⁄2)
1/2

 is less than the critical 

values, determined under the assumption of homogeneous variance, then there is 

no evidence of change point and the algorithm ends. If the max CCSSk(T⁄2)
1/2

 is 
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greater than the critical value at some k, say at k1, then the point k1 is considered 

as a possible change point and the algorithm is carried further. 

 At the second step, the series is divided into two segments corresponding 

to t < k1  and 1t k≥ , and the search is carried out to locate the first and the last 

possible change points of the series, if any, in the lower (t < k1) and the upper (

1t k≥ ) segments, respectively. If the values of max CCSSk(T⁄2)
1/2

 are insignificant 

in both segments, then there is only one change point, that is at k1, the process of 

identification is complete and the algorithm ends. If the values of max 

CCSSk(T⁄2)
1/2

 are significant in any one or both segments, then the algorithm 

moves systematically towards the corresponding extremes to find the new first 

and/or the new last possible change points. 

 Let, the significant values of max CCSSk(T⁄2)
1/2

 are found at k1,first and 

k1,last in the lower (t < k1) and upper ( 1t k≥ ) segments, respectively. At step 3a, 

the CCSSk is calculated for the piece of series corresponding to t < k1,first only. If 

the value of max CCSSk(T⁄2)
1/2

  is significant in this part, then there is a new  

k1,first. The algorithm repeats step 3a until there is no significant change point from 

the beginning of the series up to the point k1,first, obtained in the previous iteration. 

This last k1,first is taken as the first possible change point of the series. At step 3b, 

starting from k1,last  to the last observation, a similar search is carried out to find 

the last change point of the series until there is no significant change point 

between k1,last obtained in the previous iteration and the last observation. 

 The algorithm keeps looking for more possible change points inside the 

first and the last change points. It repeats step 1 to step 3 for the inner part of the 

series, that is, from k1,first  to k1,last. In this way, it determines the second and the 

second last change points, then the third and the third last change points and so 

on. This search is carried out until the p
th

 and the p
th

 last change points are the 

same or there is no more significant change point between the two points. For 

example, if the third and the third last change points are the same, that is, there is 

no significant change point between k3 and second change point, and k3 and 

second last change point, then the algorithm will end the search, where, k3 is the 

change point identified in the third iteration. There are five change points in all, 

that is, first, second, third, fourth (second last) and fifth (last). In this way, ICSS 

algorithm effectively deals with the problem of masking effect by looking for just 

one more change point at a time. 

 The algorithm can find too many change points in some cases. To avoid 

this problem, the algorithm is designed to ‘fine tune’, i.e. to validate or reject 
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iteratively the number and location of change points. It checks each change point 

in the presence of the adjacent ones. Suppose there are three change points in a 

series and k1, k2 and k3 are the number of observations, where the first second and 

third change points of the series occur, respectively. To check the first change 

point, the algorithm calculates the CCSSk values for the piece of series starting 

from observation one to the observation k2. If max CCSSk(T⁄2)
1/2 

of this part is 

greater than the critical value, then it keeps this point, otherwise drops it. The 

location of significant max CCSSk(T⁄2)
1/2 

may be considerably different from the 

earlier location, i.e. k1. Similarly, to check the second and third change points, this 

process is carried out for the set of observations from k1 to k3 and from k2 to T 

respectively. The algorithm repeats this process until convergence, i.e. until the 

number of change points does not change and their locations do not move by 

more than a specified limit. Inclan and Tiao (1994) specified the limit of two 

observations around the location determined in the previous iteration. By rejecting 

the spuriously detected change points in this way, ICSS algorithm effectively 

deals with the problem of too many change points. 

 Inclan and Tiao, (1994) conducted a simulation experiment to compare the 

performance of ICSS algorithm with that of the two alternative approaches: the 

likelihood ratio test statistic and posterior odds ratio. They did their experiment 

for one and two change points, separately. They used, for each part, a set of 

generated series of 100, 200 and 500 independent observations ~ N(0,1) with 

different set of values for the variance and locations of the change points. The 

critical values for the two statistics are computed through simulation. The 

likelihood ratio test statistic, LRn-1,n, is the ratio of two likelihoods computed for n 

= 1, 2, …. The statistic is used to test the null hypothesis that NT = n-1 against the 

alternative hypothesis NT = n, where NT is the total number of change points in 

the series. The value of NT is determined by increasing the value of n sequentially, 

that is, if NT = n-1 is rejected, and then one more change point is considered. The 

posterior odds ratio is the ratio of the posterior probabilities, i.e. ( | )
T t

p N n e=  

and ( 1| )
T t

p N n e= − , for n and n-1 change points respectively, where 2~ (0, )t te σ . 

The posterior probabilities are computed using the inverted gamma as the prior 

distribution. The authors show that for large sample size ( 200)≥  and large 

variance ratio ( 3)≥ , the ICSS algorithm outperforms its counterparts in terms of 

computational burden and the number of correct identifications of change points. 

2.2. ICSS: MV Algorithm 

 The ICSS algorithm is further expanded by Bos and Hoontrakul, (2002). 
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Its extended version proposed by Bos and Hoontrakul, (2002) is known as ICSS: 

MV, where MV stands for mean and variance, respectively. The extended 

version, ICSS: MV, explores the cause of a change point identified by ICSS 

algorithm. Bos, et al., (1998) hypothesize that ICSS algorithm, which is originally 

designed for the detection of changes in variance, may erroneously identify a 

mean change point as a variance change point. Bos and Hoontrakul, (2002) test 

this hypothesis with a Monte Carlo study. They analyze the results of ICSS 

algorithm from different data sets having various numbers of mean and variance 

changes. This study confirms that the mean changes are also picked up by the 

ICSS algorithm. Since the estimated mean is used in the formula for estimation of 

variance in ICSS, so, the above finding is logically expected.  

 ICSS-MV proposes a methodology to identify whether a change point, 

detected by ICSS algorithm, is a mean change or a variance change. The study 

suggests a procedure of standardization with respect to mean and variance of the 

two segments on each side of an estimated change point. Then, the stationarity of 

the two standardized segments is tested jointly to determine the cause of change. 

Let there be ‘q’ number of change points -excluding the two end points of the 

series-, detected by using the ICSS algorithm. Thus, we have q+1 number of 

statistically stationary segments in all. To determine the type of change at an 

estimated change point, take the two segments on each side of the change point. 

Let 
1 1, 1, 2,...
t

r t t= and /

/

22
, 1, 2,...

t
r t t= , be the observations of the segments before 

and after a particular change point with means 1r and 2r , and standard deviations 

1s and 2s  respectively. Further, let 1,2r  be the combined mean of the two 

segments. Assuming the same variance, the study suggests the standardization of 

the two segments with respect to their corresponding means as 

 
1

1 211 12 1 1 1 21 22 2 2 2( ), ( ),..., ( ); ( ), ( ),..., ( ).
t t

r r r r r r r r r r r r− − − − − −  

Further, assuming the same mean, the two segments are standardized with respect 

to their corresponding variances as 

1 21 1,2 2 1,211 1,2 12 1,2 21 1,2 22 1,2

1 1 1 2 2 2

( ) ( )( ) ( ) ( ) ( )
, ,..., ; , ,..., .

t t
r r r rr r r r r r r r

s s s s s s

− −− − − −

 Then, the ICSS process is applied on the two standardized segments 

jointly to determine the cause of the change point. This extended version of ICSS, 

named as ICSS-MV, where MV stands for mean and variance, enables one to 
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estimate both types of changes, i.e. in mean as well as in variance. It provides a 

useful tool for analyzing the behavior of return and risk of stocks, the most 

important parameters in financial literature.  

 On the basis of ICSS-MV process, if both mean and variance 

standardizations remove the change point, then the cause of change is attributed to 

both, i.e. change in mean and variance simultaneously. If variance (mean) 

standardization makes the two segments stationary and mean (variance) 

standardization does not, then the cause of change is variance (mean) only. If 

change point remains intact despite both types of standardizations, then the cause 

of change is undetermined. The change could be due to both (i.e. mean and 

variance), none (i.e. neither mean nor variance), or most probably something else. 

The following table summarizes the types of change point (Bos and Hoontrakul, 

2002). 

 

Variance-

standardized 

Mean-standardized 

Stationary Nonstationary 

Stationary 

 Nonstationary 

Mean and variance 

change 

Mean change 

Variance change 

Undetermined 

3. Application to Daily Returns of JDWS 

To elaborate ICSS- MV procedure in detail, we have selected a real data 

set containing 1715 daily observations of JDWS stock returns from Sugar and 

Allied Industries Sector.
4
 Stock returns are measured as the first difference of log 

of closing stock prices adjusted with the related information e.g. dividends, bonus 

shares and rights issues along with their ex-dates. Stock returns, rt, are defined as 

(e.g., Fama, 1965; and Fortune, 1991) 

 1ln ln
t t t

r P P−
′= − ,  (4) 

 where rt is the stock return at time t, Pt is the unadjusted stock price and Pt′ 
is the price of a stock adjusted for capital changes due to right issues, bonus 

shares and cash dividend in the following manner: 

                                                 
4
  JDW Sugar Mills Limited is a public limited company. Its principal activity is production and 

sale of crystalline sugar, electricity and managing corporate farms. 
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 1 1

1
1t t t

t t t

t t t t t

S R SP
P P D

S S PR RI SP− −

  
′= − +  

+  
, (5) 

where St = St-1+ RIt + SSt  denotes shares outstanding at time t. Further, RIt,, SSt, 

SPt , PRt and Dt denote, respectively, shares issued through rights, shares issued 

through stock dividend, subscription price for the right issues, stock price at the 

time of right issues, i.e. at ex-right date, and cash dividend. In the absence of any 

capital change, the adjusted price /

tP  in the above equation converges to the 

actual stock price Pt. 

3.1. Results of ICSS Algorithm 

 OLS method is applied to estimate the series of linearly independent et 

from the stock returns, rt, expressed around their sample mean. In the first step, 

ICSS algorithm calculates CCSSk, the centered cumulative sum of squares, for the 

entire series. The maximum value of CCSSk(T⁄2)
1/2

 is found to be 6.9925 at 1064
th

 

observation, which is significantly different from zero at one percent level (as the 

critical value is 1.628). Hence, the observation 1064 is considered as a possible 

change point. The series is divided into two segments at this point. To search for 

the first possible change point of the series, CCSSk statistic is again calculated for 

the lower part of the series only i.e. from first up to the 1063
rd

 observation. In this 

segment, the maximum value of CCSSk(T⁄2)
1/2

 is found to be significant at 638
th

 

observation. Then, CCSSk is evaluated for the series from the beginning up to 

637
th

 observation. The maximum value of CCSSk(T⁄2)
1/2

 now exceeds the critical 

value at 65
th

 observation. This process is once again repeated for the set of 

observations from the beginning up to 64. The maximum value of CCSSk(T⁄2)
1/2

 is 

now found to be 1.3275 at 18
th

 observation, which is less than the critical value at 

one percent level (i.e., +1.628). Hence, there is no evidence of variance change in 

this part of the series, i.e. from first up to the 64
th

 observation. Therefore, 65
th

 

observation is considered as the first possible change point. 

 To find the last change point, CCSSk statistic is calculated for the upper 

part of the series i.e. from 1064 up to the last observation, i.e. 1715.  In this step, 

the maximum value of CCSSk(T⁄2)
1/2

 (4.2741)  is significant  at 1479
th

 

observation. Then, this process is repeated for the range of observations starting 

from this newly found change point (i.e.1479
th

 observation) up to the end of the 

series. There is no further evidence of variance change in this data set. Therefore, 

1479
th

 observation is determined as the last change point of the series. 

 Since the estimated first and last change points are at different locations, 
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keeping  both values as possible change points, the whole process is repeated for 

the inner part of the series, i.e. from the observation 65 (the first possible change 

point) to 1478 (one observation preceding the last change point). Again 

successive application of CCSSk to this new set of observations results in a new 

first (second of the entire series) change point at 225
th

, and a new last (second last 

overall) change point at 1294
th

 observations. This process is repeated 

systematically from the extreme towards the center of the series until there is no 

significant change point between the first and the last change points. The 

maximum value of CCSSk(T⁄2)
1/2

 is found to be insignificant for the inner part of 

the 11
th

 pair of first and last change points. Hence, there are 22 change points in 

all at this stage, at the locations: 65, 225, 366, 370, 371, 396, 401, 402, 423, 438, 

458, 461, 463, 477, 531, 562, 638, 899, 1051, 1064, 1294 and 1479.  

3.1.1. Fine -Tuning  

 In the next step, the ICSS algorithm does fine-tuning to reject the 

spuriously detected change points. It checks each change point given the adjacent 

ones. To review the first change point (which is located at 65
th

 observation), the 

CCSSk statistic is calculated for the observations from beginning up to 225 (i.e. 

second change point). The maximum value of CCSSk(T⁄2)
1/2

 (4.04) is found to be 

significant at 65
th

 observation. It implies that first change point remains intact in 

the presence of the other change points. Similarly, the second change point 

(located at 225
th

 observation) is reviewed by calculating CCSSk for the set of 

observations from 65 (first change point) to 366 (third change point). The second 

change point is also found to be significant at its original location, i.e. 225 in the 

presence of the other change points. The algorithm repeats this process for all the 

remaining 20 change points. Out of 22 change points, 13 are found to be 

significant at their original locations, three are significant but at different 

locations, and the remaining six become insignificant in the presence of their 

adjacent change points. Hence, there are 16 change points in all at the following 

locations: 65, 225, 371, 396, 402, 423, 438, 458, 477, 519, 562, 788, 1051, 1071, 

1294 and 1479. Since, the number of change points, as well as their locations, has 

been changed, so another iteration seems desirable. Although, the number of 

change points now remains the same (i.e. 16), but the locations of six change 

points change. The ICSS algorithm repeats this process until convergence occurs, 

i.e. until the number of change points becomes constant and their locations do not 

move by more than a specified amount, which is set equal to two observations 

(Inclan and Tiao, 1994). The algorithm converges at 12
th

 iteration and finally 

there are 12 change points at the following locations: 65, 225, 366, 462, 477, 565, 

703, 788, 872, 1064, 1294 and 1479. 
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 In summary, 12 out of initially detected 22 change points remain no longer 

significant, three change their location and two are not detected at the initial stage. 

It shows that the ICSS algorithm effectively deals with the problem of masking 

effect and spuriously detected change points.  

3.2. Results of ICSS-MV Algorithm 

 Due to 12 change points, there are 13 stationary segments in this series. 

The values of mean and standard deviation for these 13 segments range from 0.69 

to 0.71 and from 1.67 to 10.28, respectively. Out of these 12 change points, eight 

are detected in the first half of the series. The ICSS-MV algorithm determines the 

cause of change for these 12 change points as follows. 

a) Only mean for one change point located at observation 703 (mean 

standardization removes it); 

b) Only variance for eight change points located at observations 225, 366, 

462, 477, 565, 788, 872 and 1479 (variance standardization removes 

them); 

c) Both mean and variance for two change points located at observations 

1064 and 1294 (both types of standardizations, i.e., mean as well as 

variance eliminate them); and 

d) Since both types of standardizations (mean as well as variance) do not 

remove the first change point located at 65
th

 observation, so its cause 

cannot be determined. 

 We select one change point from each of the four above-mentioned 

categories for detailed explanation of the identification process. The mean change 

is explained with the help of 7
th

 change point located at the observation 703. The 

procedures for mean and variance standardizations, proposed by Bos and 

Hoontrakul (2002), are applied on the two segments on each side of the 7
th

 change 

point. Then, the ICSS process is applied on both the said segments jointly in both 

cases to check stationarity. The mean standardization removes this change point, 

while the variance standardization does not. It means that this shift is caused by 

mean only. 

 To explain the variance change, the second change point located on 

observation 225 is taken into consideration. The same procedure of 

standardizations is applied on the two segments on each side of the second change 

point.  The change point is removed in case of variance standardization, whereas 

it remains intact in case of mean standardization. Hence, it is deduced that only 
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variance is the cause of this shift. 

 The change caused by both mean and variance can be explained with the 

help of the second last change point located at observation 1294. This shift is 

preceded by the longest stationary segment of this series (from observation 1064 

to 1294, amounting to 13.4% of the total number of observations). At this change 

point, both mean and variance decrease as compared to the preceding and 

following segments. Since both types of standardizations remove the change 

point, hence, it is established that this shift is caused by both mean and variance. 

To determine the type of the first change point located at 65
th

 observation, the two 

segments on each side of this change point, i.e. from observation 1 to 64, and 

from observation 65 to 224 (one observation preceding the second change point), 

are standardized by mean and variance. The ICSS results show that the change 

point remains intact despite all types of standardizations considered, establishing 

that the change may be caused by either both mean and variance, or none of them, 

or even more probably, by something else. 

 The details of detected change points and the corresponding statistically 

stationary segments of the series of stock returns, determined by the ICSS: MV 

algorithm, are reported in the Figure 1. The thick lines show the mean value of the 

segment and the outer dotted bands are set at mean ±  2(standard deviations) for 

the corresponding segments, where the mean and standard deviation are 

calculated for the observations between the corresponding change points. Shifts in 

the thick and dotted lines indicate the presence of change points. The causes of 

change points, other than ‘variance only’, are indicated with the help of arrow 

heads in the figure, while the cause of all other change points is ‘variance only’. 

 This graphical depiction provides an easy way to see the various 

characteristics of volatility/mean regimes, e.g. where a regime begins and ends its 

size, its cause, value and change in its mean and volatility. In this case, there are 

twelve change points and thus, thirteen different statistically stationary segments 

in the series.  

 The algorithm has estimated, in addition to the number of change points, 

magnitude and location of both types of shifts, i.e. increases and decreases in 

mean and variance. 

The analysis of identified change points show that the iterative procedure of ICSS 

algorithm, i.e. the search for only one change point at a time at different pieces of 

the series, has effectively dealt with the problem of masking effect. For example, 

the algorithm has captured both types of shifts, i.e. increases as well as decreases 
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in mean and variance in our sample. Out of 12 identified change points, the values 

of mean and variance increase at 6 (50%) points

volatility are observed during 8
th

is also the longest one of the series (covering 

observations in the series). The maximum and minimum values of mean are found 

during 12
th

 (0.71) and 5
th

 (-5.08) regimes, respectively. 

volatility and mean is mixed. It is found to be positive

for the remaining four times. 

segment shows that the incidence of change points is fairly random and hence 

cannot be predicted. 

Figure 1: Mean and Variance episodes in the Dai

Returns Estimated by ICSS

 

 

Note: 1. Thick and dotted lines show mean and mean +/

different episodes in the series of daily stock returns.

2. Shifts in thick as well as dotted lines indicate the presence of change points.

3. Arrow heads refer to the factors other than 'variance only' causing change points in the series.
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mean and variance in our sample. Out of 12 identified change points, the values 

of mean and variance increase at 6 (50%) points. The maximum and minimum
th

 and last regimes, respectively and the last regime 

the longest one of the series (covering 13.8% of the total number of 

The maximum and minimum values of mean are found 

5.08) regimes, respectively. The relationship between 

ed. It is found to be positive eight times and negative 

 The large variation in the length of stationary 

segment shows that the incidence of change points is fairly random and hence 

Figure 1: Mean and Variance episodes in the Daily Stock 

Returns Estimated by ICSS-MV Algorithm 

1. Thick and dotted lines show mean and mean +/- 2 standard deviations respectively,

different episodes in the series of daily stock returns.  

2. Shifts in thick as well as dotted lines indicate the presence of change points.  

3. Arrow heads refer to the factors other than 'variance only' causing change points in the series.

mean and variance in our sample. Out of 12 identified change points, the values 

and minimum 

regime 

% of the total number of 

The maximum and minimum values of mean are found 

The relationship between 

and negative 

The large variation in the length of stationary 

segment shows that the incidence of change points is fairly random and hence 

 

2 standard deviations respectively, for 

3. Arrow heads refer to the factors other than 'variance only' causing change points in the series. 
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4. Conclusion and Implications 

A change-point procedure, based on iterative (cumulative) sums of 

squares, is applied to detect mean- and variance change-points in a financial time 

series.  The algorithm is constructed to address the violation of constant 

unconditional variance assumption underlying GARCH model. As a sensitivity 

check to keep track of the algorithm’s correct detection variance shifts, an 

improved version of the algorithm is also applied. Real firm-level data set 

containing 1715 daily observations of JDWS stock returns from Sugar and Allied 

Industries Sector of Karachi Stock Exchange is used for illustrative purposes. Our 

results confirm that the ICSS algorithm dealt effectively with the problem of 

masking effect and spuriously detected change points. During fine-tuning, 12 out 

of initially detected 22 change points became insignificant, three changed their 

location and two were not detected at the initial stage.  Following the improved 

version proposed by Bos and Hoontrakul, (2002),  the cause of 8, 1, 2 and 1 

change points was found only variance, only mean, both mean and variance, and 

undetermined, respectively.  

The ICSS-MV algorithm has captured both types of shifts, i.e., increases 

as well as decreases in mean and variance in our sample. The relationship 

between mean and variance is observed positive eight times and negative for the 

remaining four times. The different sizes of stationary segments show that the 

occurrence of change points is quite random and hence cannot be fairly predicted.  

Some of the unidentified changes can be parameterized both in mean and 

variance relationships by including these change points in the analysis. This can 

be helpful in finding better estimates of variance. The volatility of stock market is 

considered as an important indicator of the health of an economy by 

academicians, researchers, policy makers and regulators. Applications for large 

data, and measured with other time frequencies, are planned in the future.  
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