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Abstract 

This paper reviews various inequality measures and finds that only few measures 

possess desirable properties of an inequality measure. Gini coefficient and the 

coefficient of variation are decomposable both in additive and non-additive forms 

and possess all the properties, except the stringent Pigou-Dalton condition given 

by Diminishing Transfers Axiom. Kakwani index and four popular generalized 

Gini indices posses all the properties but they are not decomposable additively or 

non-additively. Since sensitivity of an inequality measure to the location of 

income transfers also varies across various measures, hardly any measure can 

serve all the purposes and it is desirable to employ more than one measure in an 

empirical analysis of income inequality. 
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1. Introduction 

  Measurement of inequality has been an area of great interest for 

statisticians and economists. Till the end of eighteenth century pure statistical 

measures like range and mean deviation were used to measure income inequality. 

However in the early nineteenth century a few specific measures of inequality 

were proposed. In 1905, Max Otto Lorenz proposed a revolutionary graphical 

measure of inequality known as Lorenz curve, from which Gini in 1912 derived a 

parametric measure of inequality, known as Gini coefficient. Since then a sizable 

literature on the measurement of income inequality has emerged. In another 

remarkable contribution in 1920 Dalton linked inequality to economic welfare and 

thereby originates the idea of normative inequality measures, which was further 

polished by Atkinson, (1970). Theil, (1967) derived inequality measure from the 

notion of entropy in information theory. 

  Later on it was realized that Gini coefficient and some other measures are 

characterized by certain rigidities. For example, Gini coefficient attaches more 

weight to income transfers affecting middle-income classes and not much weight 
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to income transfers within extreme income classes. In case of Lorenz curves the 

conclusion regarding the degree of inequality becomes ambiguous when the 

curves representing two different income distributions intersect each other. 

Moreover for comparing social welfare of two or more income distributions 

Lorenz curves are useful only when distributions have the same mean incomes. 

Such rigidities were seriously addressed and a number of generalized measures 

were proposed to overcome these inflexibilities during the 1980s. Among such 

generalizations basic focus of analysis was on the generalization of Lorenz curve 

and Gini coefficient. Shorrocks, (1983) introduced generalization of Lorenz 

curve, while a large number of generalizations of Gini coefficient were proposed, 

amongst which the ones proposed by Kakwani, (1980b), Donaldson and 

Weymark, (1980, 1983) and Yitzhaki, (1983) became popular. Shorrocks (1980) 

also proposed generalization of entropy indices.  

  Apart from measurement of inequality, another vital issue has been the 

splitting up of overall inequality into sub-components or sub-groups. There can be 

at least two ways to conduct decomposition of inequality, i.e. additive and non-

additive. A measure is said to be additive decomposable when total inequality in 

the population under consideration can be broken into a weighted average of the 

inequalities existing between and within sub-groups of the population. In non-

additive decomposition the focus of analysis is on the contribution of sub 

categories of the variable under consideration to total inequality. The literature 

shows that not all measures of inequality are decomposable. For example, 

generalized entropy indices and Ebert, (1999) indices are additive decomposable 

only, while Gini coefficient can be decomposed in both ways.  

  This study presents a comprehensive review of inequality measures. It 

consists of five sections. Section 2 proposes a classification of inequality 

measures into two groups that can be labeled as statistical measures and regular 

measures. The statistical measures of inequality include all the measures of 

dispersion that can also be used to measure inequality. The regular measures, on 

the other hand, include the measures that are meant for measuring inequality. 

These can further be sub-classified into four groups, namely ordinary measures, 

Lorenz curve and related measures; entropy measures and pure welfare based 

measures. Section 3 explains decomposing of inequality measure into sub groups 

and sources. Section 4 explains the desirable properties that a good inequality 

measure is supposed to possess and it evaluates all the measures considered on the 

basis of these properties. Finally, section 5 summarizes the entire discussion. 
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2.  Classification of Inequality Measures 

  Measures of inequality can be classified in a number of ways. Sen, (1973) 

classified them into two categories namely positive and normative measures. 

Positive measures are those, which quantify the extent of inequality in an 

objective sense usually by employing statistical measures of dispersion. 

Normative measures are based on explicit formulation of social welfare function 

that indicates the welfare loss arising from an unequal distribution of income.
2
 

Thus positive measures seek to describe the existing pattern of income 

distribution as a single statistic without involving any value judgment, while 

normative measures base inequality on value judgments. 

  Positive measures include range, relative mean deviation, variance, 

coefficient of variation, Gini index, Lorenz curve, etc. Some well-known 

normative measures are Dalton measure and Atkinson index. As Sen, (1973) has 

pointed out, no firm line can be drawn between positive and normative measures 

and many of the positive measures are special cases of normative measures. 

  This paper proposes the classification of inequality measures into the 

groups of statistical measures of dispersion and regular measures of inequality. 

Statistical measures are designed to measure dispersion in any data and are also 

useable for measuring income inequality. These are positive measures of 

inequality and include, range, mean deviation, relative mean deviation, variance, 

coefficient of variation and variance of logarithms. The measures of inequality, 

purely meant for measuring inequality are hereby referred to as ‘regular 

measures’. These measures can be further classified as ordinary measures, Lorenz 

curve and related measures, entropy measures and pure welfare based measures. 

2.1. Statistical Measures 

  Some of the well-known statistical measures of dispersion are as follows. 

2.1.1. Range 

  Range is defined as the difference between extreme values of a variable. 

While first time using range as a measure of inequality, Sen, (1973) divided it by 

arithmetic mean in order to make it a unit free measure. Denoting the income of 

                                                 
2
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income unit i by 
i

Y  and arithmetic mean of income by Y , the range as a measure 

of inequality is written as: 

 
( ) YMinYMaxYR

ii
−=

 
(1) 

  The range takes values of zero and n for the extreme cases of perfect 

equality and perfect inequality respectively. Range is a simple measure of 

inequality but it completely ignores the distribution in between the extreme 

income levels. 

2.1.2. Mean Deviation and Relative Mean Deviation 

  In order to consider the entire distribution, Bortkiewicz (1889) proposed 

mean deviation, defined below, which depends on the scale of measurement. 
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A related measure proposed by Turroni (1910), which is scale independent, is the 

relative mean deviation: 
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  If income is distributed equally, the value of RM will be equal to zero, 

while in case of perfect inequality wherein one income unit holds the entire 

income, its value will be equal to ( ) nn 12 − . This measure (along with mean 

deviation) is not sensitive to income transfers between income units lying on any 

one side of mean income and it assigns equal weight to small as well as large 

deviations from the mean. Both these problems are overcome by variance and 

related measures.  

2.1.3. Variance and Related Measures 

  Instead of ignoring signs, variance takes squares of mean deviations 

before averaging. It is given by 

 

( ) nYYV
n

i
i∑
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−=
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 (4) 

A related measure is standard deviation, which is the square root of variance. 

Both these measures are scale dependent. This deficiency is overcome by 

coefficient of variation:  
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 YVCV =  (5) 

  In case of perfect equality the value of CV will be equal to zero and in 

case of perfect inequality its value will be equal to 1−n . A problem associated 

with this measure is that it is more sensitive to differences among rich or among 

poor income-units as compared to the differences among middle income-units. 

  Variance of the logarithm of income is another measure of inequality. 

Unlike variance, it is income scale independent and it makes inequality as 

sensitive to differences among rich or among poor income-units as to the 

differences among middle income-units. Denoting geometric mean of income by 

Y
~

, the variance of log-income can be written as 

 

( ) nYYV
n

i
iL ∑

=

−=
1

2~
lnln  (6) 

  Many studies (see Sen 1973) have used arithmetic mean in place of 

geometric mean in this formula. In any case a problem with this measures is that it 

become undefined when income of any unit equals zero. 

2.2. Regular Measures 

  The regular measures of inequality meant purely for the measurement of 

inequality can be classified into four categories, which are discussed below. 

2.2.1.  Ordinary measures 

  Ordinary inequality measures can also be labeled as ‘adhoc’ inequality 

measures, as they are featured with numerous limitations.
3
 We include Elteto and 

Frigyes indices in this category. 

i.  Elteto and Frigyes Indices 

  Elteto and Frigyes (1968) divided the entire population into two groups; 

those whose income is less than mean income and those whose income is equal to 

or greater than mean income and proposed the following three measures of 

inequality. 

 L
YYu = , 

LG
YYv = , YYw

G
=  (7) 
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where Y  is the mean income in the entire population, 
L

Y  the mean income of 

those whose income is less than Y  and 
G

Y  the mean income of those whose 

income is greater than or equal to Y . The index v is an overall measure of 

inequality; while u and w indicate disparity of poor and rich income groups from 

the overall mean income. The three measures have the lower limit of one, while 

only w has an upper limit, which is n. 

 Elteto and Frigyes further proposed the following transformed measures. 

Y
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  The lower limit of each of these measures is zero. The upper limit of u′  

and v′  is one, while that of w′  is equal to n11− . Clearly ,uwv =  and 

wuwuv ′′−′+′=′ , that is only two of the three measures u, v and w or u′, v′ and w′ 

are mutually independent. 

 Kondor (1971) has shown that these three indices can be combined as follows 

to yield a value equal to one-half of the relative mean deviation, that is 
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where 
L

p  and 
L

s  are respectively the population and income shares of the poor 

group of population.
4
 

ii.  Lorenz Curve and Related Measures 

  Lorenz curve is one of the most widely used tools to describe state of 

inequality. A large numbers of inequality measures are directly based on Lorenz 

curve. The most common among them are Gini coefficient, Schultz index and 

Kakwani index.
5
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5
 Schultz Coefficient is simply equal to one half of the relative mean deviation’ so the later can 
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can also be related to relative mean deviation. But again these measures will not be discussed here, 

as they have not been derived from Lorenz curve. 
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Lorenz curve, named after a US statistician Max Otto Lorenz and introduced in 

1905 is the relationship between the cumulative percentages of incomes (placed in 

ascending order) measured along the vertical axis and the corresponding 

cumulative percentages of income units measured along the horizontal axis.
6
 Let 

incomes be denoted by 
n

YY ,...,
1

 such that 
n

YYY ≤≤< ,...0
21

 and the corresponding 

income shares by 
n

ss ,...,
1

. Then cumulative shares of income units and incomes 

are ni  and ∑
=

=
n

i
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1

 respectively. The Lorenz curve can now be constructed by 

taking combinations of ni  and 
i
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 The Lorenz curve, as plotted in Figure 1, shows that the curve closer to the 

line of perfect equality (the diagonal line) represents a more equal distribution of 

income as compared to the one that is relatively away from the line of perfect 

equality. 

Figure 1: Lorenz Curve 

 

 

 

 

 

 

 

 

 

  

Although Lorenz curve is simple and a widely accepted measure of inequality, yet 

it is not free from limitations. For example, conclusion regarding the degree of 

inequality becomes ambiguous when the curves representing two different income 
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distributions intersect each other. Furthermore the Lorenz curve does not provide 

a numeric measure of inequality.  

  Atkinson (1970) explained the ethical strength of Lorenz curve by relating 

it to social welfare. In its modified form, the Lorenz curve is related to the basic 

characteristics of social welfare function. This is best explained in Atkinson’s 

Theorem, called Lorenz Dominance Criterion, stated as follows. 

  Theorem I: This theorem states that for two income distributions A and B, 

having identical means, social welfare in distribution A is greater than social 

welfare in distribution B if Lorenz curve of distribution A lies everywhere above 

the Lorenz curve of distribution B, provided that the underlying social welfare 

function is individualistic, non-decreasing, symmetric, additive and strictly 

concave. 

  Although Lorenz Dominance is a useful and important theorem, but as a 

criterion of welfare comparison it has two limitations; it permits comparison only 

when distributions have same mean incomes and it does not provide comparison 

between intersecting Lorenz curves. 

iii.  Generalized Lorenz Curve 

  This curve was proposed by Shorrocks (1983) to overcome the limitations 

of Lorenz Dominance criteria to some extent. It is obtained by scaling up Lorenz 

curve by mean income. It is obtained by plotting the combinations of cumulative 

population shares ni  and cumulative income shares multiplied by mean income 

Yq
i

, that is, 
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  Height of the point where the generalized Lorenz curve terminates shows 

the mean income and convexity measures the extent of inequality. As with the 

ordinary Lorenz curve, the higher the degree of convexity, the higher will be the 

extent of inequality and vice-versa. As an example three generalized Lorenz 

curves are shown in Figure 2. The lowest curve represents equal distribution, 

while the upper-most curve indicates the maximum degree of inequality. 

iv.  Social Welfare and Generalized Lorenz Curve 

  Shorrocks (1983) has proposed Generalized Lorenz Dominance criterion 

by which welfare comparison can be made even between the distributions having 

different mean income and/or intersecting ordinary Lorenz curves. 
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Theorem 2: For two income distributions A and B, social welfare in the 

distribution A is greater than social welfare in the distribution B if the generalized 

Lorenz curve of distribution A lies everywhere above the generalized Lorenz 

curve of distribution B, provided that underlying social welfare function is 

individualistic, non decreasing, symmetric, additive and strictly concave. 

 

 

 

 

 

 

 

 

 

 

 

  

  Note, however, that even Generalized Lorenz Dominance criterion’ fails if 

the generalized Lorenz curves intersect each other. Thus both Lorenz Dominance 

and Generalized Lorenz Dominance criteria provide incomplete ranking of 

welfare states. We now consider the parametric measures of inequality that can be 

derived from Lorenz curve. 

v.  Kakwani Index 

  Kakwani, (1980a) introduced the following measure of inequality based 

on Lorenz curve. 
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Figure 2: Generalized Lorenz Curve 



Idrees and Ahmad 

 10

income, the length will be equal to 2. Thus the value of Kakwani index lies 

between zero and one.
7
  

vi.  Schultz Index 

  Schultz, (1951) proposed another measure of inequality based on Lorenz 

curve.  It is defined as the value of the maximum discrepancy (measured by 

horizontal distance) between the line of perfect equality and Lorenz curve. It is 

given by: 
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i

YY
Yn
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12
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  Schultz coefficient measures the proportion of total income that would 

have to be transferred from those whose income is above mean income to those 

whose income is below mean in order to attain perfect equality. That is why it is 

also known as ‘maximum equalization percentage’ or ‘Robin Hood index’. 

Schultz coefficient is equal to one half of relative mean deviation, so it shares all 

the merits and demerits of relative mean deviation. 

vii. Gini Coefficient 

  Gini coefficient, attributed to Gini, (1912), is by far the most popular 

measures of income inequality.
8
 There are at least three approaches to define Gini 

coefficient. The first one, called geometric approach, expresses Gini coefficient as 

the ratio of area between the line of absolute equality and the Lorenz curve to the 

total area below the line of absolute equality. Rao, (1969) has given following 

formula to calculate Gini coefficient through geometric approach: 
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where iP  is the cumulative population share and iq  is the cumulative income 

share of the income unit i, when all income units are arranged in ascending order 

of income. 

                                                 
7
 Gini coefficient attaches more weight to transfers of income near the mode of the distribution 

than in any one of the tails, while Kakwani index attaches more weight to transfers at the lower 

end than at the middle and upper ends of distribution (See Kakwani 1980a). Discussion on Gini 

coefficient is given later in this section. 
8
 David (1968) has pointed out that Gini Coefficient, as given by relative mean difference, was 

developed much earlier by F. R. Helmert in 1870s. However, its link with Lorenz curve was 

established by Gini himself. 
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The second approach is attributed to Gini himself who referred to the Gini 

coefficient as ‘concentration ratio’. In the words of Gini, (1921) “the 

concentration ratio is the quotient of the mean difference by the twice the 

arithmetic mean”. Denoting incomes of the income units i  and j  by 
i

Y  and 
j

Y , 

the mean income by Y  and the number of income units by n, Gini coefficient 

according to this approach can be written as (see Kendall and Stuart 1963): 

 

∑∑
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2
2

1
 (15) 

  The third approach expresses Gini coefficient as a function of covariance 

between incomes and their ranks and it is given by (see Anand 1983):
9
 

 
( ) YnYiCovG

i
,2=  (16) 

  Gini coefficient lies between zero and one; zero representing perfect 

equality and one perfect inequality. It provides a meaningful interpretation of 

Lorenz curve. Moreover it is based on more direct approach and does not take 

arbitrary squares, as in case of variance and related measures. However, a 

problem with Gini coefficient is that it attaches more weight to income transfers 

affecting middle-income classes and not much weight to income transfers within 

extreme income classes. This problem is somewhat solved by Generalized Gini 

indices. 

viii. Generalized Gini Indices 

  Generalized Gini indices are normative in nature, as these can be made 

more or less sensitive to income transfers at any part of income distribution. 

Generalized Gini indices are based on weighted gaps between the line of perfect 

equality and Lorenz curve along different locations of a given income distribution 

and various generalizations differs in their weighting scheme. This property is 

often referred to as ethical flexibility. 

Kakwani, (1980b) introduced the following generalization, in which the 

parameter α represents sensitivity of the inequality index to income transfers 

between different income units. 

                                                 
9
 Gini coefficient can also be calculated by many other ways. A good description is available in 

Anand (1983). 
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  For 1>α  ( 1<α ) more weight is given to transfers in lower (upper) tail 

of income distribution. It coincides with ordinary Gini coefficient when 1=α . 

Donaldson and Weymark, (1980) and Yitzhaki, (1983) have also proposed 

generalization of Gini coefficient, but these are cardinally equivalent to 

Kakwani’s generalized Gini index (see Chakrawarty, 1988 and Yitzhaki, 1983). 

  More recently Chotikapanich and Griffiths (2001) proposed the following 

generalization, where 
i

s , 
i

p  and 
i

P  are respectively income share, population 

share and cumulative population share of the ith  income unit and υ is an 

inequality aversion parameter: 
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  For 2<v  ( 2>v ) more weight is given to transfers in upper (lower) tail of 

the income distribution. The index coincides with ordinary Gini coefficient when 

2=v . 

2.2.2. Entropy Measures 

  Another popular class of inequality measures is known as entropy 

measure, which is derived from the notion of ‘entropy’ in information theory. It 

includes two types of measures namely Theil entropy measures and generalized 

entropy indices. The basic idea behind entropy is that events that differ from what 

was expected, should receive more weight than the events that confirm with prior 

expectations. 

i. Theil’s Entropy Measures 

  If s is the probability that a certain event will occur, the information 

content ( )sh  of noticing that the event has occurred must be a decreasing function 

of s. One possible way to express such a function is in the form of logarithm of 

reciprocals, that is ( ) ( )ssh 1ln= . With n possible events with probabilities 

n
ss ,...,

1
, the entropy can be defined as sum of the information contents of all the 

events weighted by their respective probabilities: ( ) ( ) ( )∑∑
==

==
n

i

ii

n

i
ii

ssshssH
11

1ln



Measurement of Income Inequality: A Survey 

 13

The information content is zero when one of the events has probability equal to 

one; that is one draws no information from the occurrence of an event that was 

anticipated with certainty. The information content is at its maximum when 

n
s

i

1
=  and, hence ( )nH ln= . 

  If 
i

s  is interpreted as the income share of the income unit i, ( )sH  will 

look like a measure of equality. Thus subtracting entropy ( )sH  from its 

maximum value ( )nln , the latter representing perfect equality, yields an index of 

inequality, known as Theil’s first entropy index of inequality: 

( ) ( ) ( )[ ]∑
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=−=
n

i
ii

nsssHnT
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1
1lnln . Since YnYs

ii
= , we can further write 

Theil’s index as: 
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  Theil, (1967) has interpreted 
1

T  as “the expected information of a message 

that transforms population shares into income shares”. In case of perfect equality 

the income share of each income unit is equal to the corresponding population 

share and hence the index takes the value equal to zero. On the other hand, if 

income share of one income unit is equal to one and that of everyone else is equal 

to zero then 
1

T  assumes the value equal to ( )nln . Furthermore, higher the 

difference between income shares and population shares, the higher will be the 

value of Theil index. Considering this principle, Anand (1983) restated Theil 

index as a general distance function that measures divergence between income 

and population shares. Although Theil index is frequently used for measuring 

income inequality, Sen (1973) opined that it lacks intuitive sense and is just an 

arbitrary formula. 

 Theil’s second measure is obtained by interchanging the roles of 

population and income shares in the formula ( )[ ]∑
=

=
n

i
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measure can be written as 



Idrees and Ahmad 

 14

 

( )[ ]∑
=

=
n

i
i

YY
n

T
1

2
ln

1
 (20) 

  It is apparent from the above that Theil’s second measure of inequality is 

equal to mean log deviation or log of the ratio of arithmetic mean to geometric 

mean of income. The lower limit of Theil’s second measure is zero but it has no 

upper limit.  In actual practice both the measures of Theil do not consider zero 

incomes, as log of zero is undetermined. 

ii.  Generalized Entropy Indices 

  Shorrocks, (1980) presented the following class of generalized entropy 

indices. 
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  Note that for 2=c  the index becomes one half of the squared coefficient 

of variation and cardinally equivalent to Herfindal index, which is a measure of 

industrial concentration. As the value of c increases, the measure becomes more 

sensitive to changes in the upper tail of the income distribution. The lower bound 

of 
c

I  is zero, while the upper bound varies with c. With 0=c  the measure has no 

upper limit, while with 1=c  its upper limit is ( )nln . If 0>c  and 1≠c  and all 

incomes are positive then the upper bond of 
c

I  will be ( ) ( )11
1

−−
−

ccn
c

. 

2.2.3. Pure Welfare Based Measures 

  The measures of inequality discussed so far are positive measures in their 

specific original forms. The generalized forms of these measures base inequality 

on value judgment about the sensitivity parameter. In this sense the generalized 

measures become normative in nature. Now we describe the class of inequality 

measures, which are not generalized forms of positive measures but are pure 

normative measures. 
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i. Dalton’s Measure 

Dalton, (1920) was the first to introduce the idea that inequality 

measurement should relate to economic welfare. His measure is based on 

utilitarian framework and it uses the intuition that income inequality results in loss 

of social welfare. As shown in Kakwani (1980a), Dalton’s measure can be written 

as 

 
( ) ( )YnUYUD

n

i
i∑

−

−=
1

1  (22) 

  With perfect equality ( ) ( )∑
=

=
n

i
i

YnUYU
1

, hence 0=D . Assuming 

diminishing marginal utility if incomes are unequally distributed, we’ll have 

( ) ( )∑
=

>>
n

i
i

YUYnU
1

0  and, hence, 10 << D . It follows that greater the difference 

between ( )∑
=

n

i
i

YU
1

 and ( )YnU , the greater will be the value of D  and higher will 

be the degree of inequality. 

 Dalton’s measure provides a general rule for defining inequality in terms 

of welfare. For actual measurement of inequality the utility function needs to be 

parameterized. Using an inequality aversion parameter ε, Cowell (2000) redefined 

Dalton’s index as follows. 
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n

D
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 (23) 

  The condition 0>ε  implies social preference for equality. The larger the 

value of ε, the greater will be the weight attached to transfers at the lower end of 

the distribution. As ∞→ε , the welfare function becomes Rawalsian, i.e., welfare 

depends on income of the poorest member of society. On the other hand as 

,0→ε  the welfare function becomes linear in income and, hence, invariant to 

redistribution of income. Cowell has pointed out the limitation of Dalton’s index 

that its value does not necessarily increase with ε, the presumed inequality 

aversion parameter.  

ii. Atkinson’s Measure 

 Atkinson, (1970) criticized Dalton’s index on the grounds that it is variant 

with respect to positive linear transformations of utility function. Atkinson 
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suggested an alternative measure based on the concept of equally distributed 

equivalent income 
e

Y , which if equally distributed will make the welfare level 

exactly equal to the level generated by actual distribution of the given aggregate 

income. That is ∑
−

==
n

i
ee

YiUYnUYY
1

)()( . If the function )(YU  is concave, 
e

Y  

cannot be larger than the mean income Y . The difference between these two can 

be interpreted as the welfare loss due to inequality. Thus greater is the divergence 

between 
e

Y  and Y , the greater will be the level of inequality and vice versa. 

Atkinson’s measure can be obtained by dividing the difference between Y  and  

e
Y  by Y , that is:

10
 

 
( ) YYYYYA

ee
−=−= 1  (24) 

The specific form of Atkinson’s index is given by: 
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  If incomes are equally distributed and hence YY
e

=  then the value of 

Atkinson’s index will be equal to zero. If all income is given to just one income 

unit, eY  will approach to zero and Atkinson’s index will take the value equal to 

one. In general when incomes are unequally distributed we shall have 10 << A . 

Ebert (1999) has interpreted ‘A’ as the fraction of mean income that is lost per 

income unit due to inequality. 

 Atkinson’s index also has certain limitations. For example, its values are 

not comparable across societies even for a given value of the inequality aversion 

parameter ε because one cannot claim that all societies have the same attitude 

towards inequality. However, this argument can equally be applied to other 

inequality measures in general and the ones involving inequality aversion 

parameters in particular. 

                                                 
10

 Sen (1972) pointed out that Atkinson’s measure requires that the function U(Y) be concave but 

not strictly concave,. i.e. .00 ≤′′>′ UandU  
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iii. Ebert’s Measure 

 Ebert (1999) introduced the following measure based on the concept of 

equally distributed equivalent income, which Ebert interpreted as representative 

income or average standard of living evaluated by the underlying social welfare 

ordering. 

 
( ) 1−=−=

eee
YYYYYE  (26) 

In specific terms Ebert (1999) proposed following formula for the measurement 

of inequality. 
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  Ebert’s index has the lower limit equal to zero and has no upper limit. 

Note that while Atkinson’s index measures welfare loss due to inequality as a 

proportion to mean income, Ebert’s index expresses the welfare loss as a 

proportion to equally distributed equivalent income. Obviously Ebert’s index and 

Atkinson’s index are ordinally equivalent because 
( ) ( ) ( )

[ ]
εεε

AAE −= 1 . Ebert 

(1999) has further pointed out that every Ebert’s index is also ordinally equivalent 

to the corresponding generalized entropy measure for 11 <=− cε . This 

concludes the description of the measurement of inequality. The next section is 

focused on decomposition analysis of the inequality measures. 

3. Decomposition of Inequality Measures 

 An important task in analyzing inequality is to work out its structure and 

sources. For example, it is worthwhile to know how the income inequality in a 

country is accounted for by inequality within its different regions and the 

inequality between the regions. Similarly it is worthwhile to express inequality 

into different sources of income, such as wages, rents, etc. Inequality 

decomposition is a standard technique for examining the contribution of sub-

groups of population, income sources/types and characteristics of income units to 

the overall inequality. Decomposition analysis is helpful in pointing out the 

sources and incidence of inequality.  
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There can be at least two ways to conduct decomposition of inequality, i.e. either 

by splitting up of the population, called sub-group decomposition or by division 

of income (or other such variables), known as source-decomposition. It is the 

objective of decomposition, which determines what type of decomposition is to be 

carried out. The sub-group and source decomposition can appropriately be 

distinguished as additive and non-additive decomposition. A measure is said to be 

additive decomposable when total inequality of population can be broken down 

into a weighted average of the inequalities existing between and within sub-

groups of populations. In non-additive decomposition the focus of analysis is on 

the contribution of sub-categories of income (or other such variables) to total 

inequality, rather than on how total inequality is sub-divided between and within 

sub-groups. Further detail on the two types of decomposition techniques are 

discussed as follows. 

3.1. Additive Decomposition 

 An additive decomposable measure is the one that can split total inequality 

( )
T

I  into a weighted average of the inequality existing within sub-groups of the 

populations ( )
W

I  and the inequality existing between the sub-groups ( )
B

I . If 
1

g

,…,
K

g  are the K sub-groups of population then an additive decomposable 

measure can be written as follows. 

( ) ( ) ( )[ ] ( )[ ]
KBKWWKT

ggIgIgIggI ,...,...,...,
111

+++=  (28) 

where ( )
K

ggI ,...,
1

, ( )
kW

gI  and ( )
KB

ggI ,...,
1

 denote inequality in the entire 

population, within sub-group k and between sub-groups 1 to K respectively. The 

between-group component can be defined as the level of inequality when incomes 

within each sub-group have been equalized, i.e., each income unit within a sub-

group is given the mean income of the sub-group.
11

 Likewise the within sub-

group component can be defined as the value of the inequality index when all the 

between group income differences are suppressed. In order to eliminate the 

between group income differences mean incomes across the sub-groups are 

equalized to the overall mean income through equi-proportionate changes in 

incomes of the individual income units. 

                                                 
11

 There are two views regarding the equalization of all within group incomes. The traditional 

view followed by Shorrocks (1980, 1984) and Cowell (1980) is to assume that each income unit 

receives the mean income of its sub-group. Ebert (1999) has, however, used equally distributed 

equivalent income for this equalization. 
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Anand (1983) has pointed out that Theil’s second measure and variance of log-

incomes are the only two measures which are additive decomposable under this 

strict definition. Cowell has further shown that in practice the variance of log-

incomes is not properly decomposable because of the complexity in disentangling 

the within-group and between-group inequality components. A more relaxed 

definition of the within group component, which has broader application, is that it 

is the weighted sum of inequality indices of all the sub-groups. In the following 

analysis we shall consider this relaxed definition in order to add more inequality 

measures in the class of additive decomposable measures, which along with 

decomposability also need to satisfy other desirable properties of an inequality 

measure. 

 Shorrocks (1980) has shown that any inequality measure that satisfies 

diminishing-transfer axiom, principle of population, income-scale independence 

and decomposability must belong to generalized entropy class or its ordinal 

transformations.
12

 Shorrocks has, however, pointed out that with the exception of 

Theil’s two measures, no entropy index satisfies adding-up condition, i.e., within-

group component weights do not sum to one and the decomposition coefficients 

are dependent on the between groups contribution. A related problem lies in 

interpreting contributions of the two components to total inequality: In words of 

Shorrocks “Interpretation (i) suggests a comparison of total inequality with the 

value which would arise if inequality was zero within each age group, but the 

difference in mean income between age groups remained the same. For the 

additive decomposable indices this would eliminate the total within group-term 

and leave only the between group contribution. Interpretation (ii) suggests a 

comparison of total inequality with the value, which would result if the mean 

incomes of the age groups were made identical, but inequality within each group 

remained unchanged. This eliminates the between group term in the 

decomposition equation; but the reduction in inequality is not simply between 

groups inequality, because in general, changing the age-group means will also 

affect the decomposition coefficients and hence the total within group 

contribution”. Shorrocks further pointed out that the two interpretations are 

reconcilable if and only if the weights assigned to income units are independent of 

income shares. Only Theil’s second measure (also called mean log deviation), in 

which weights are population share, satisfies this requirement. Hence Theil’s 

second measure is the most satisfactory additive decomposable measure among 

the class of generalized entropy indices. 

                                                 
12

 These are the desirable properties of inequality measures, which will be explained in section 4. 
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Foster and Shneyerov (2000) have explored ‘path independent decomposition’ 

property for neat decomposition in which within group and between groups 

components of total inequality are mutually independent. They conclude that 

mean log deviation or Theil’s second measure has a path independent 

decomposition when deviations are taken from arithmetic mean, and variance of 

logarithms is path independent when deviations are taken from geometric mean. 

 Gini coefficient is another additive decomposable inequality measure. 

However, it’s neat additive decomposition remained an unsettled issue for a 

number of years. Bhatacharya and Mahalanonis (1967) were first to work on the 

sub-group decomposition of Gini coefficient and they ended up with an additional 

cross term. Paytt (1976) and Das and Parikh (1982) also found the same results. 

Mookherjee and Shorrocks (1982) arrived at the conclusion that there is no 

meaningful interpretation of this cross term. Shorrocks (1984) showed that neat 

additive decomposition of Gini coefficient, without cross term is possible if 

incomes of all income units in one sub-group are less than those in the other sub-

group. Silber (1989), Yitzhaki and Lerman (1991) and Yitzhaki (1994), however, 

suggested different interpretations of cross term (see Kuan 2003). Dagum (1997) 

has shown that Gini coefficient is neatly decomposable without cross term if sub-

groups of populations do not overlap and if they do overlap then Gini coefficient 

can be additively decomposed into three components; inequality within sub-

groups of population, the net contribution of extended Gini inequality between the 

sub-groups and the contribution of the intensity of trans-variation (overlapping 

effect) between sub groups of population. The word trans-variation stands to the 

fact that the differences in incomes across sub-groups considered are of opposite 

sign than the difference in mean incomes of the corresponding sub-groups. 

 More recently Ebert (1999) has presented a new family of additively 

decomposable measures. Ebert’s measures, generalized entropy measures and 

Atkinson’s indices are ordinally equivalent, so they provide the same ranking of 

inequality across a set of populations. Atkinson’s indices are not additively 

decomposable; while Ebert’s and generalized entropy indices are decomposable.
13

 

The selection between Ebert’s measures and generalized entropy indices for 

decomposition depends upon objective of decomposition. In words of Ebert 

(1999) “if the focus is on income (describing opportunities) generalized entropy 

measures seem to be more suitable; if the distribution of living standard is 

                                                 
13

 de la Vega and Urrutia (2003) have, however, presented factorial decomposition of Atkinson’s 

indices in which total inequality can be written as product of within group and between groups 

inequality.  
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relevant Ebert’s indices should be preferred.” The additive decomposition of each 

additive decomposable measure is given in Table: A1 (Appendix – A).  

3.2. Non-Additive Decomposition 

 Non-additive decomposition focuses on the contribution of components of 

the variable analyzed, such as income or consumption, to total inequality. 

Shorrocks (1982) has shown that Gini coefficient, variance and coefficient of 

variation are the only well-known measures of inequality that can be decomposed 

by this criterion. The decomposition of Gini coefficient is straightforward. 

Denoting the cumulative shares of income component k by k

i
q , the concentration 

coefficient for the income component k, which is like Gini coefficient given by 

(15) but after placing the income component in the ascending order of income, 

can be calculated as 
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  It is straightforward to show that Gini coefficient of income is equal to the 

weighted sum of the concentration coefficients of income components, where 

weights are the shares of aggregate income components in the aggregate income, 

that is, 
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  The contribution of income component k to total inequality (denoted by
G

kO ) can be obtained as: 
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Next, the variance ( )YV  and the squared coefficient of variation ( )[ ]2
YCV  can be 

decomposed, following Shorrocks (1982), as 
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where 
jkρ  is the correlation coefficient between income components j and k. It is 

easy to verify that the contribution of each income component to the overall 

inequality for variance and the square of coefficient of variation is the same and is 

given by:. 
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where kρ  is the correlation coefficient between kY  and Y. This concludes our 

discussion on the decomposition of inequality measure. 

4. Desirable Properties of an Inequality Measure 

 Each inequality measure has certain qualities of its own. One way of 

selecting a desirable inequality measure is to adopt ‘axiomatic approach’, 

according to which an ideal measure should possess certain characteristics. A 

summary of these properties, mostly based on Litchfield (1999), is given as 

follows. 

4.1.  The Pigou-Dalton Transfer Principle 

  The inequality measure should indicate increase (decrease) in inequality as 

a result of regressive (progressive) transfers of income. That is an income transfer 

from a poor (rich) to a richer (poorer) income unit should increase (decrease) the 

value of the inequality measure or at least leave it unchanged, provided their ranks 

do not change. 

  A stronger version of this axiom is ‘Diminishing Transfers Axiom’ (DTA), 

according to which if equal amounts of incomes are taken from two income units 

with incomes iY  and 
jY , where 

ji YY <  and given to income units with incomes 

cYi −  and cY j − , where 0>c , such that income transfers are rank preserving, 

then income transfer from iY  will reduce inequality by a greater extent as 

compared to the reduction caused by income transfer from 
jY  
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4.2.  Principle of Population 

  An inequality measure should be invariant to replication of population. 

Thus merging two or more identical distributions should not alter the degree of 

inequality. This axiom indicates that the extent of measured inequality should not 

depend on size of the population. 

4.3.  Symmetry 

  Inequality measure should be independent of any characteristics of income 

units other than their incomes or other welfare indicators being measured. 

4.4.  Income Scale Independence 

  Inequality measure should be invariant to uniform proportional changes in 

incomes. Fields and Fei (1978) have shown that an index that satisfies the above 

four properties (excluding the stronger Diminishing Transfer axiom) will also 

fulfill Lorenz Dominance criterion. Such a measure is also referred to as Lorenz 

Consistent measure. 

4.5.  Principle of Addition 

  If a positive (negative) constant is added to the incomes of the all income 

units, the value of inequality measure should indicate decrease (increase) in the 

degree of inequality. The basic idea is that if unequally distributed incomes are 

supplemented with equally distributed transfers, the incomes of the poor will rise 

relative to the incomes of rich, thereby reducing the degree of inequality. It is easy 

to verify that Income Scale Independence and Pigou-Dalton Transfer Principle are 

sufficient, though not necessary, for the fulfillment of the Principle of Addition 

axiom. 

4.6.  Decomposability 

  An inequality measure should be decomposable, both additively and non-

additively. 

4.7.  Defined Limits 

  An inequality measure should have defined and interpretable limits 

independent of the size of population. In most cases the lower limit of an 

inequality measure is zero, showing perfect equality and upper limit is one, 

showing perfect inequality. This property allows interpretable assessment of the 

degree of inequality and its comparison across populations.  
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Not all measures of inequality satisfy the above properties. Table 1 shows that the 

principle of population and symmetry is the only criteria that satisfy all measures. 

Furthermore with the exception of mean deviation, variance and Dalton measure, 

all the measures are also income scale independent. As far as Pigou-Dalton 

Transfer condition is concerned range satisfies this condition if and only if the 

recipient is the poorest income unit and/or the donor is the richest income unit, as 

it takes into account only two extreme incomes. Mean deviation, relative mean 

deviation and the measures proposed by Elteto and Frigyes and Shultz index 

satisfy this condition if income of the recipient is below mean income and income 

of the donor is above mean income, that is, these measures are not sensitive to 

transfers between income units lying on one side of the mean income. Anand 

(1983) has shown that variance of log-incomes also does not satisfy Pigou-Dalton 

condition for transfers within incomes above Ye
~

, where e  is the base of natural 

logarithm and Y
~

 is geometric mean of incomes. All other measures satisfy this 

property. Variance, coefficient of variation, Gini coefficient and generalized Gini 

coefficients that satisfy the basic Pigou-Dalton transfer condition, fail to meet 

conditions for the stronger version, that is, Diminishing Transfer axiom. Only one 

of the generalizations of Gini coefficient presented by Chotikapanich and 

Griffiths satisfies the diminishing transfer axiom and that too for the sensitivity 

parameter 2>v . 

 It follows from the discussion so far that most of the well kwon measures, 

specifically coefficient of variation, Kakwani index, the Gini and Entropy classes, 

Atkinson index and Ebert indices, are Lorenz Consistent. 

 As far as Principle of Addition is concerned only mean deviation, variance 

and the indices of Elteto and Frigyes do not satisfy this condition. 

 The lower limit of all the measures is zero, while there are only few 

indices that have meaningful upper limit. Elteto and Frigyes indices, Kakwani 

index, Gini coefficient, generalized Gini indices, Delton’s index and Atkinson’s 

indices are the few measures that have upper limit of one. It may, however, be 

noted that any measure with finite lower and upper limits can be converted to a [0, 

1] range through an appropriate linear transformation. 

 Coming now to the decomposition of inequality measure, variance, 

coefficient of variation and Gini coefficient are the only three measures that are 

decomposable both in additive and non-additive forms, while Theil’s two 

measures, generalized entropy indices and Ebert’s indices are only additively 

decomposable. 
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Table 1: Comparison of Inequality Measures in Terms of Properties and Limits 

Inequality 

Measure 

Pigou-Dalton 

Condition 

Principle 

of 

Population 

& 

Symmetry 

Income Scale 

Independence 

Lorenz 

Consistent 

Principle 

of 

Addition 

Decomposability Defined Limits 

N o r ma l Stronger Additive 
Non 

Additive 
Lower Upper 

Range No No Satisfy Satisfy No Satisfy No No Zero n  

Mean 

Deviation 
No No Satisfy No No No No No Zero ( ) nnY 12 −  

Relative Mean 

Deviation 
No No Satisfy Satisfy No Satisfy No No Zero ( ) nn 12 −  

Variance Satisfy No Satisfy No No No Satisfy Satisfy Zero )1(2 −nY  

Coefficient of 

Variation 
Satisfy No Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy Zero 1−n  

Variance of 

Log-incomes No No Satisfy Satisfy No Satisfy No No Zero No limit 

Elteto & 

Frigyes 

Indices 

No No Satisfy Satisfy No No No No Zero One 

Kakwani Index Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy No No Zero One 

Schultz Index No No Satisfy Satisfy No Satisfy No No Zero ( )nn 1−  

Gini 

Coefficient 
Satisfy No Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy Zero One 

Generalized 

Gini Indices 

(Kakwani) 
Satisfy No Satisfy Satisfy Satisfy Satisfy No No Zero One 

Generalized 

Gini Indices 

(Donaldson-

Weymark) 

Satisfy No Satisfy Satisfy Satisfy Satisfy No No Zero One 

Generalized 

Gini Indices 

(Yitzhaki) 
Satisfy No Satisfy Satisfy Satisfy Satisfy No No Zero One 

Generalized 

Gini Indices 

(Chotikapanic

h-Griffith) 

Satisfy No Satisfy Satisfy Satisfy Satisfy No No Zero One 
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Theil’s First 

Measure Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy No Zero ( )nln  

Theil’s Second 

Measure Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy No Zero No limit 

Generalized 

Entropy 

Indices 
Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy No Zero ( )

( )1
1

1 1 −
−

−cn
cc

 

Dalton’s 

Indices Satisfy Satisfy Satisfy No No Satisfy No No Zero One 

Atkinson’s 

Indices Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy No No Zero One 

Ebert’s Indices Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy Satisfy No Zero No limit 

 

 Different measures have different responses to the transfers of income 

from one income unit or group to another. Some measures are more sensitive to 

income transfers at upper income tail, while others are more sensitive to transfers 

at the lower end of the distribution. The measures that are more sensitive to 

transfers of income between rich classes are called ‘alpha type’ measures. The 

coefficient of variation falls in this category. The measures that are more sensitive 

to transfers of income between poor classes are called ‘gema type’ measures. 

Variance of logarithms and Theil entropy measure fall in this group. The 

measures, which are more sensitive to transfers of income in the middle-income 

range, are called ‘beta type’ measures. This category includes Gini coefficient. 

Finally, note that the sensitivity of all pure normative measures and generalized 

indices depends on the values of the relevant sensitivity parameters
14

. 

5. Summary 

It appears that although there is a large literature available on the measures 

of income inequality, but there are only few measures that meet the criteria of 

desirable properties that an ideal inequality measure should fulfill. As far as the 

measurement of income inequality is concerned, coefficient of variation, Kakwani 

index, Gini coefficient, generalized Gini indices, Theil’s two measures, 

generalized entropy indices, Atkinson’s indices and Ebert’s indices can be 

considered as the best measures. However, among these measures Kakwani index, 

generalized Gini indices and Atkinson’s indices are not decomposable additively 

or non-additively, while Theil’s two measures and generalized entropy indices 

                                                 
14

 For the empirical estimates of these inequality measures see Idrees M and E. Ahmad (2010), 

Idrees M. and Ahmad E. (2012) and Idrees M. (2012). 
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and Ebert’s indices are decomposable additively only. Thus for a thorough 

analysis of income inequality coefficient of variation and Gini coefficient are the 

only available measures that posses all the desirable properties. Finally, since 

sensitivity of an inequality measure to the location of income transfers also varies 

across various measures, hardly any measure can serve all purposes and it is 

desirable to employ more than one measure in an empirical analysis of income 

inequality. 

  In nutshell it is concluded that each inequality measure looks at income 

inequality from different dimension. The selection of an appropriate inequality 

measure depends upon the objective of researcher. If objective is merely to 

measure income inequality then Gini coefficient is the most appropriate measure, 

if the objective is decomposition then along with Gini Coefficient, generalized 

entropy measures are the best choices and if the objective is to incorporate value 

judgment then Atkinson’s indices are the best choice. 
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Appendix: A 

Table A1: Additive Decomposition of Inequality Measures 
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